numpy - Applying a Fast Coordinate Transformation in Python -
i have simple 2x2 transformation matrix, s, encodes liner transformation of coordinates such x' = sx.
i have generated set of uniformley distributed coordinates on grid using np.meshgrid() function , @ moment traverse each coordinate , apply transformation @ coordinate coordinate level. unfortunately, slow large arrays. there fast ways of doing this? thanks!
import numpy np image_dimension = 1024 image_index = np.arange(0,image_dimension,1) xx, yy = np.meshgrid(image_index,image_index) # pre-calculated transformation matrix. s = np.array([[ -2.45963439e+04, -2.54997726e-01], [ 3.55680731e-02, -2.48005486e+04]]) xx_f = xx.flatten() yy_f = yy.flatten() x_t in range(0, image_dimension*image_dimension): # current (x,y) coordinate. x_y_in = np.matrix([[xx_f[x_t]],[yy_f[x_t]]]) # perform transformation x. optout = s * x_y_in # store new coordinate. xx_f[x_t] = np.array(optout)[0][0] yy_f[x_t] = np.array(optout)[1][0] # reshape output xx_t = xx_f.reshape((image_dimension, image_dimension)) yy_t = yy_f.reshape((image_dimension, image_dimension))
loops slow in python. better use vectorization. in nutshell, idea let numpy loops in c, faster.
you can express problem matrix multiplications x' = sx, put points in x , transform them 1 call numpy's dot product:
xy = np.vstack([xx.ravel(), yy.ravel()]) xy_t = np.dot(s, xy) xx_t, yy_t = xy_t.reshape((2, image_dimension, image_dimension))
Comments
Post a Comment