python - Sympy classes Zero, One and NegativeOne, why they exist? -


today found this

>>> type(1) <class 'sympy.core.numbers.one'> >>> type(0) <class 'sympy.core.numbers.zero'> >>> type(-1) <class 'sympy.core.numbers.negativeone'> >>> type(2) <class 'sympy.core.numbers.integer'> 

i looked documentation sympy types, doesn't why exist. there reason have 3 special singleton classes -1, 0 , 1?

edit: saw @ sympy online shell

every number in sympy represented instance of the class number. floats, integers , rationals subclasses of number. zero subclass of integer.

you can inspect full class lineage of object calling class's mro (method resolution order) method:

in [34]: sympy import s in [38]: type(s.zero).mro() out[38]:  [sympy.core.numbers.zero,  sympy.core.numbers.integerconstant,  sympy.core.numbers.integer,            <-- 0 kind of integer  sympy.core.numbers.rational,  sympy.core.numbers.number,  sympy.core.expr.atomicexpr,  sympy.core.basic.atom,  sympy.core.expr.expr,  sympy.core.basic.basic,  sympy.core.evalf.evalfmixin,  object] 

these subclasses "teach" sympy how manipulate , simplify expressions symbolically. example, instances of rational class negated way:

def __neg__(self):     return rational(-self.p, self.q) 

that say, if x instance of rational, -x causes x.__neg__() called. meanwhile, instances of integer class, negated by

def __neg__(self):     return integer(-self.p) 

and if object is, in particular, instance of zero, its negation defined by:

@staticmethod def __neg__():     return s.zero    # negation of 0 still 0 

zero, one , minusone implement _eval_power method "teaches" these objects how evaluate x raised power (where x zero, one or minusone). example, zero raised positive expression equals itself:

def _eval_power(self, expt):     if expt.is_positive:         return self     ... 

one raised anything equals itself:

def _eval_power(self, expt):     return self 

if peruse the source code sympy.core.numbers module, you'll find loads of definitions in effect teaching sympy how symbolic arithmetic. it's not different children taught in math class, except expressed in computer-ese.

you might wondering why there isn't special class every integer. integers besides zero, one , minusone treated instances of general integer class. rules of addition , multiplication , on laid out there. unlike zero, one , minusone instantated when module loaded, other integers cached only needed:

def __new__(cls, i):     ...     try:         return _intcache[ival]   # <-- return cached integer if seen before     except keyerror:                    obj = expr.__new__(cls)  # <-- create new integer if ival not in _intcache         obj.p = ival          _intcache[ival] = obj         return obj 

Comments

Popular posts from this blog

php - Wordpress website dashboard page or post editor content is not showing but front end data is showing properly -

javascript - Twitter Bootstrap - how to add some more margin between tooltip popup and element -

javascript - Get parameter of GET request -