python - numpy ValueError shapes not aligned -


so trying adapt neural network michael nielson's http://neuralnetworksanddeeplearning.com/chap1.html

i modified network.py work on python 3 , made small script test few 15x10 pictures of digits.

import os import numpy np network import network  pil import image  black = 0 white = 255  cdir = "cells" cells = []  cell in os.listdir(cdir):     img = image.open(os.path.join(cdir,cell))     number = cell.split(".")[0][-1]     pixels = img.load()     pdata = []     x in range(img.width):         y in range(img.height):             pdata.append(1 if pixels[x,y] == white else 0)     cells.append((np.array(pdata), int(number)))  net = network([150,30,10]) net.sgd(cells,100,1,3.0,cells) 

however have error:

file "network.py", line 117, in backprop nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) valueerror: shapes (30,30) , (150,) not aligned: 30 (dim 1) != 150 (dim 0)

i tried boolean , without problem, seems issue numpy on python 3 incompatible python 2.7 ?

edit: tried boolean , different number of neurones number hidden layer , input layer , fails

edit2:it not work on python 2.7 here modified network.py

import random  import numpy np  class network(object):      def __init__(self, sizes):         """the list ``sizes`` contains number of neurons in         respective layers of network.  example, if list         [2, 3, 1] three-layer network,         first layer containing 2 neurons, second layer 3 neurons,         , third layer 1 neuron.  biases , weights         network initialized randomly, using gaussian         distribution mean 0, , variance 1.  note first         layer assumed input layer, , convention         won't set biases neurons, since biases         ever used in computing outputs later layers."""         self.num_layers = len(sizes)         self.sizes = sizes         self.biases = [np.random.randn(y, 1) y in sizes[1:]]         self.weights = [np.random.randn(y, x)                         x, y in zip(sizes[:-1], sizes[1:])]      def feedforward(self, a):         """return output of network if ``a`` input."""         b, w in zip(self.biases, self.weights):             = sigmoid(np.dot(w, a)+b)         return      def sgd(self, training_data, epochs, mini_batch_size, eta,             test_data=none):         """train neural network using mini-batch stochastic         gradient descent.  ``training_data`` list of tuples         ``(x, y)`` representing training inputs , desired         outputs.  other non-optional parameters         self-explanatory.  if ``test_data`` provided         network evaluated against test data after each         epoch, , partial progress printed out.  useful         tracking progress, slows things down substantially."""         if test_data: n_test = len(test_data)         n = len(training_data)         j in range(epochs):             random.shuffle(training_data)             mini_batches = [                 training_data[k:k+mini_batch_size]                 k in range(0, n, mini_batch_size)]             mini_batch in mini_batches:                 self.update_mini_batch(mini_batch, eta)             if test_data:                 print("epoch {0}: {1} / {2}".format(                     j, self.evaluate(test_data), n_test))             else:                 print("epoch {0} complete".format(j))      def update_mini_batch(self, mini_batch, eta):         """update network's weights , biases applying         gradient descent using backpropagation single mini batch.         ``mini_batch`` list of tuples ``(x, y)``, , ``eta``         learning rate."""         nabla_b = [np.zeros(b.shape) b in self.biases]         nabla_w = [np.zeros(w.shape) w in self.weights]         x, y in mini_batch:             delta_nabla_b, delta_nabla_w = self.backprop(x, y)             nabla_b = [nb+dnb nb, dnb in zip(nabla_b, delta_nabla_b)]             nabla_w = [nw+dnw nw, dnw in zip(nabla_w, delta_nabla_w)]         self.weights = [w-(eta/len(mini_batch))*nw                         w, nw in zip(self.weights, nabla_w)]         self.biases = [b-(eta/len(mini_batch))*nb                        b, nb in zip(self.biases, nabla_b)]      def backprop(self, x, y):         """return tuple ``(nabla_b, nabla_w)`` representing         gradient cost function c_x.  ``nabla_b`` ,         ``nabla_w`` layer-by-layer lists of numpy arrays, similar         ``self.biases`` , ``self.weights``."""         nabla_b = [np.zeros(b.shape) b in self.biases]         nabla_w = [np.zeros(w.shape) w in self.weights]         # feedforward         activation = x         activations = [x] # list store activations, layer layer         zs = [] # list store z vectors, layer layer         b, w in zip(self.biases, self.weights):             z = np.dot(w, activation)+b             zs.append(z)             activation = sigmoid(z)             activations.append(activation)         # backward pass         delta = self.cost_derivative(activations[-1], y) * \             sigmoid_prime(zs[-1])         nabla_b[-1] = delta         nabla_w[-1] = np.dot(delta, activations[-2].transpose())         # note variable l in loop below used little         # differently notation in chapter 2 of book.  here,         # l = 1 means last layer of neurons, l = 2         # second-last layer, , on.  it's renumbering of         # scheme in book, used here take advantage of fact         # python can use negative indices in lists.         l in range(2, self.num_layers):             z = zs[-l]             sp = sigmoid_prime(z)             delta = np.dot(self.weights[-l+1].transpose(), delta) * sp             nabla_b[-l] = delta             nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())         return (nabla_b, nabla_w)      def evaluate(self, test_data):         """return number of test inputs neural         network outputs correct result. note neural         network's output assumed index of whichever         neuron in final layer has highest activation."""         test_results = [(np.argmax(self.feedforward(x)), y)                         (x, y) in test_data]         return sum(int(x == y) (x, y) in test_results)      def cost_derivative(self, output_activations, y):         """return vector of partial derivatives \partial c_x /         \partial output activations."""         return (output_activations-y)  #### miscellaneous functions def sigmoid(z):     """the sigmoid function."""     return 1.0/(1.0+np.exp(-z))  def sigmoid_prime(z):     """derivative of sigmoid function."""     return sigmoid(z)*(1-sigmoid(z)) 

ok, found bug, had reshape data

cells.append(np.reshape((np.array(pdata),(150,1)), int(number))) 

seems array dimensions (x,1) , (x,) treated differently numpy during computations


Comments

Popular posts from this blog

php - Wordpress website dashboard page or post editor content is not showing but front end data is showing properly -

javascript - Twitter Bootstrap - how to add some more margin between tooltip popup and element -

javascript - Get parameter of GET request -