numpy - Python load large number of files -


i'm trying load large number of files saved in ensight gold format numpy array. in order conduct read i've written own class libvec reads geometry file , preallocates arrays python use save data shown in code below.

n = len(file_list) # create class object , read geometry file gvec = vec.libvec(os.path.join(current_dir,casefile)) x,y,z = gvec.xyz()  # preallocate arrays u_temp = np.zeros((len(y),len(x),n),dtype=np.dtype('f4')) v_temp = np.zeros((len(y),len(x),n),dtype=np.dtype('f4')) u_temp = np.zeros((len(x),len(x),n),dtype=np.dtype('f4')) v_temp = np.zeros((len(x),len(y),n),dtype=np.dtype('f4'))  # read individual files allocated arrays idx,current_file in enumerate(file_list):     u,v =gvec.readvec(os.path.join(current_dir,current_file))     u_temp[:,:,idx] = u     v_temp[:,:,idx] = v      del u,v 

however takes seemingly forever wondering if have idea how speed process? code reading individual files array structure can seen below:

def readvec(self,filename): # supposing moment naming scheme piv__vxy.case piv__vxy.geo not changes should # not case appropriate changes have made corresponding file     data_temp = np.loadtxt(filename, dtype=np.dtype('f4'), delimiter=none, converters=none, skiprows=4)      # u value     in range(len(self.__y)):         # x value counter         j in range(len(self.__x)):             # y value counter             self.__u[i,j]=data_temp[i*len(self.__x)+j]      # v value     in range(len(self.__y)):         # x value counter         j in range(len(self.__x)):             # y value counter             self.__v[i,j]=data_temp[len(self.__x)*len(self.__y)+i*len(self.__x)+j]      # w value     if len(self.__z)>1:          in range(len(self.__y)):             # x value counter             j in range(len(self.__xd)):                 # y value counter                 self.__w[i,j]=data_temp[2*len(self.__x)*len(self.__y)+i*len(self.__x)+j]          return self.__u,self.__v,self.__w     else:             return self.__u,self.__v 

thanks lot in advance , best regards,

j

it'a bit hard without test input\output compare against. think give same u\v arrays nested loops in readvec. method should considerably faster loops.

u = data[:size_x*size_y].reshape(size_x, size_y) v = data[size_x*size_y:].reshape(size_x, size_y) 

returning these directly u_temp , v_temp should help. right you're doing 3(?) copies of data them u_temp , v_temp

  1. from file temp_data
  2. from temp_data self.__u\v
  3. from u\v u\v_temp

although guess 2 nested loop, , accessing 1 element @ time causing slowness


Comments

Popular posts from this blog

php - Wordpress website dashboard page or post editor content is not showing but front end data is showing properly -

javascript - Twitter Bootstrap - how to add some more margin between tooltip popup and element -

javascript - Get parameter of GET request -